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Abstract. We study the soliton cellular automaton (SCA) in (2+1)-dimensions from the viewpoint
of the integrable vertex model. As in our previous paper, we relate the SCA, the so-called
box-ball system, to an integrable vertex model associated with the Bogoyavlensky lattice. We
extend this framework and introduce the (2 + 1)-dimensional SCA, which can be interpreted as
the ultradiscretization of the 2D Toda equation. We also construg¥tkeliton solutions for this
system.

1. Introduction

The Bogoyavlensky lattice [1-5] is a differential-difference equation given by

v, u
d_ = Vn Z(Vrﬁk - ank) (11)
d k=1

whereV, = V,(t) (fort € R, n € Z), andM is an arbitrary positive integer. It has been
shown by using the inverse scattering method that this model is integrable in the Liouville
sense not only for the classical case but also for the quantum case [3N-Sbkton solution

is also constructed by use of the bilinear equation [5]. The Hamiltonian structure of the
Bogoyavlensky lattice is related to the lattidealgebra [4, 6], and we can regard the hierarchy
of the Bogoyavlensky lattice (a set of commutative flows including equation (1.1)) as the
discrete analogue of thef + 1)-reduced Kadomtsev—Petviashvili (KP) hierarchy [4].

Recent interest in the Bogoyavlensky lattice is due to the explicit relation with the soliton
cellular automata (SCA). By use of the ‘ultradiscretization’ procedure [7], Tokikiral
pointed out a relationship between the bilinear equation for the Bogoyavlensky lattice and
the evolution equation for the SCA, the so-called ‘the box—ball system’ [8, 9], which is a
generalization of the system introduced by Takahashi and Satsuma [10]. Since this bilinear
equation is a reduction of the Hirota equation [11], ffesoliton solution for the box—ball
system is constructed [8, 9] by making use of the Casorati determinant solution for the Hirota
equation [12]. This ultradiscretization partly provides an answer to Wolfram’s quesidmat'
is the correspondence between cellular automata and continuous sysfegjs?

Recently, we proposed another new procedure called ‘crystallization’ to give the SCA from
the Bogoyavlensky lattice in [14]. There, the quantized Lax matrix for the Bogoyavlensky

0305-4470/99/396853+16$30.00 © 1999 IOP Publishing Ltd 6853



6854 R Inoue and K Hikami

lattice is regarded as the Boltzmann weight of the integrable vertex model on the two-
dimensional square lattice. The configurations on each vertex cannot be generally fixed at
a finite temperature, but they are uniquely determined at a zero temperature. We call this
process therystallization A crucial fact which was clarified in [14] is that, in such a unique
configuration, variables on theertical edges exactly coincide with the time evolution of
Takahashi—-Satsuma’s box—ball system. Inthis paper as a continuation of [14] we shall consider
the integrable vertex model associated with the quantum Bogoyavlensky lattice, and study the
cellular automaton on theorizontaledges in detail. Our main claim here isthat, intie—> oo

limit, this cellular automaton can be interpreted as the ultradiscretized 2D Toda equation while
the cellular automaton on theertical edge is identified with Takahashi—Satsuma’s box—ball
system. We shall also construct thesoliton solution for thig2 + 1)-dimensional system,

and propose the reduction condition to obtain the soliton solution for a fihitase.

This paper is organized as follows. In section 2, we consider a relationship between the
Bogoyavlensky lattice and the 2D Toda equation. We show that the bilinear equation for the
2D Toda equation is given when we modify that for the Bogoyavlensky lattice (1.1) and take a
limit M — oo. We further time-discretize this bilinear equation, and construcssliton
solutions. Using the full-discretized bilinear equation, we constimgintegrable difference
equations as the discrete 2D Toda equation; one is essentially the same as the Bogoyavlensky
lattice, the other is the dynamical system which will be shown in section 3 to be related to
the integrable vertex model. In section 3, we introduce the ‘crystallized’ integrable vertex
model on a two-dimensional square lattice, and consider the relationship between its unique
configuration and the SCA. We first briefly review the results in [14], and define the box—
ball system in terms of the two-dimensional integrable vertex model. Next we show that the
dynamical system related to therizontaledges coincides with the ultradiscretization of the
2D Toda equation in the limi — oo while variables on theertical edges give the box—ball
system. In section 4 we construct thesoliton solution for the ultradiscretized 2D Toda
equation, which gives a soliton solution of the SCA in (2 + 1) dimensions. We further study
how to give a reduction condition to construct tiesoliton solutions for the box—ball system.

The last section is devoted to the concluding remarks.

2. Transformation from the Bogoyavlensky lattice to the 2D Toda equation

We shall derive discrete analogues of the 2D Toda equation from the Bogoyavlensky
lattice (1.1). We modify the dynamical variables for the Bogoyavlensky lattitgas = Ak

(forj =0,1,..., M—1)withacondition’/™ = V%  and rewrite the original equation (1.1)
as
dV,Ej) ‘ J ® M-1 . j—1 . M-1 ®
Tzvy)<2vﬂ+l+ > V,E)—ZV,E)—ZVn_l)- (2.1)
k=0 k=j+1 k=0 k=j
We find that this equation can be written more simply as
d VW™ 0 o -
= ’ — _ YW _ plUth
O log ST P e A VA (2.2)

We note that, in the limiMd — oo, the Bogoyavlensky lattice (2.2) coincides with the equation
of motion for thesl,, Toda field theory [15-17], and that we can regard equation (2.2) as a
(2 + 1)-dimensional equation by identifying the superscripwith another space dimension
besides: [18]. Explicitly we set) — AV, (Aj, t) whereA is a unit size of a new coordinate



Construction of soliton cellular automaton from vertex model 6855

j, and equation (2.2) reduces to the 2D Toda equation in the fimit O;
2

dr dy

where we use notations= Aj andV, = V,(y, t). In this sense we can regard equation (2.2)
as a semi-discrete 2D Toda equation.
To construct the soliton solution for the Bogoyavlensky lattice (2.2), we usetinection
) (forneZ, j=0,1,...M — 1),
G+ _()

V(j) _ ‘n+l -1
noT D) () T
©’

logV, =Vu1— 2V, +V, 1 (2.3)

Here we suppose a conditiar}{’” = rn(?l. Then equation (2.2) reduces to the bilinear equation,

(+D) G) — GHD_() G+D ()
DtTnJ ’ 7'—nj =T L1 Tnj Tnj (24)

where the operatab, denotes Hirota’s bilinear operator [19],

d a\"
(D)"f-g= (5 - W) f(t)g(t/)b:r’-

It is straightforward to give thev-soliton solution from the bilinear equation (2.4) in the
standard way, and we leave the fully discrete case until later.

Since equation (2.2) has a continuous variablé is necessary to introduce the fully
discrete equation to relate the Bogoyavlensky lattice with the cellular automata. The
discretization of the time coordinatein equation (2.2) is realized by introducing the full-
discretization of the bilinear equation (2.4) [5] as

j+1),t+1_(j), (G+D,1+1_ ().t j+1),t _(j),t+1
gD (0t g ST — (1 — §) gD (D (2.5)

Here we impose a conditiorf* = t'%;" ands denotes the unit size of time-coordinate

One recovers equation (2.4) by taking the> 0 limit in equation (2.5). By setting

G+D,t+1_(j).t
V(‘i)'t _ ‘n+l n—1
n - j+1),t+1_(j).t
r,gj ) Tn(j)

with the z-function in equation (2.5), one obtains the time-discretization of equation (2.2),

U A=A = sn

VIR sy @ — sy

We remark that, after the coordinate transformation, equation (2.6) coincides with the equation
of motion for the discrete aﬁinﬂj&) Toda field theory [20], and that a rank of the underlying

Lie algebra plays a role of the space dimension.
We introduce another new discrete analogue of the 2D Toda equation by making use

of the samer-function in equation (2.5). When we set a variabg’’ (for n,t € Z and
j=01...,.M—1)as

. (2.6)

()t=1_(j)t=1
B n-2 2.7)
()t=1\2 !
(Tn—l )

Vn(J')J —

we get the equation of motion for the variabg’"’,

(=D,t+1y, ().t (ORNANE]
vnj Vn] _ \Ijn+1 \Ijn—l

‘ " . (2.8)
Vn(izl),tvn(j),ﬁl (lprsj),r)z
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whereW\”" is given by

) 71 71

Jt

W =0 YO * 1_[ VoD (2.9)
n'=n+l Yy n'=n Yy

We note that the variablé'”* and the dynamical variablel”* for the discrete Bogoyavlensky
lattice (2.6) are related to each other as
YUY DIT _ yGbiyGi-D.i-1 (2.10)

and that the variabl&”"" is written in terms oV’ as
00 U—hni—k

)t — —k+1
V" - l_[ (j—k),t—k "
k=2 ank

By expanding equation (2.8) by an infinitesindaja unit of discrete time), and picking up
the first order of, we obtain the time-continuum limis (— 0) of equation (2.8) as
d v R VAVES) oo (=D oo (=D
4 0975 = il l ey =y
Vn n'=n+1 Vn’ n'=n Vn’ n'=n—1 Vn’

(2.11)

whereV,) = v (1), Especially in theMf = 1 case, we have only one independent variable
V@ = V,, and the mapping (2.10) reducesMp = V,.1V,+2. The time-evolution equation
for V, becomes
d 2

Evn = (Vn) (Vn+1 - Vn—l)
which is related to the discrete modified Korteweg—de Vries (KdV) equation [21]. On the
other hand, in the limit o — oo, the variabIeVnU) reduces td/, in the continuum limit
of j (we applied the same procedure as that used to derive equation (2.3) from (2.2)), and
equation (2.11) naturally reduces to the 2D Toda equation (2.3). Therefore, we can regard
equation (2.8) as another full-discretization of the 2D Toda equation (2.3). It should be noted
that although the discrete 2D Toda equation and its ultradiscretization were studied in [22],
their equation of motion is different from equations (2.6) and (2.8).

Before closing this section, we give the soliton solutions for the discrete 2D Toda
equation (2.6). By applying the standard method to the bilinear equation (2.5) under the
limit M — oo, the N-soliton solution is obtained as [23]

=3 ( [T Awiaipe qk)> eXp(Z(ci +E (pi, qi))>- (2.12)
JCI NikeJ, i<k ieJ

Here parameters; (i = 1,2,..., N) are arbitrary constants, ang (resp.q;) denotes a
velocity in then- (resp.j-) direction. The sef isZ = {1,..., N}, andJ is all subsets of .
The functiong,ﬁ’)’f(p, g) and the scattering matriA (p;, g:; px, gx) are respectively defined
as follows:

&7 (p.q) =nlogp + jlogg +rloguw(p, q) (2.13)
(x(Pir g1) = x(pr, ) (gD = x(p g )

A(pi, qi; Pks qk) = —— —— (2.14)
x(pirqi) — x(pi a7t g7 — x(pr- q0)
where functionsav(p, ¢) andx(p, ¢) are given by
1-8@A+x(ptqgt
w(p.q) = =202 P4 ) (2.15)

1-51+x(p,q)

-1
x(pog) = 1P =D (2.16)
qg—1
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Figure 1. We assign variables on the edges of the two-dimensional square lattice. We classify the
horizontal and vertical edges.

3. The vertex model and the SCA

We introduce the two-dimensional integrable vertex model associated with the Bogoyavlensky
lattice following [14]. We show that the ultradiscretization of the 2D Toda equation also
naturally appears in this vertex model.

3.1. The SCA as the Bogoyavlensky lattice

The SCA called ‘the box—ball system’ is defined by the following evolution equation [8]:

N-1 N-1 j-1 M
T T-1 T T T-1
uN’j_mln( E Upn G — E uy . 1— E Uy jr— E uN!j,> (3.1)
N'=—co N'=—o00 j=1 =i

where M is a positive integer and is equal 8 in the Bogoyavlensky lattice (1.1). This
evolution equation describes how the balls move as time passes. The vaf;iglllenotes the
number of the balj (j = 1, ..., M) in the Nth box at the timel", and takes zero or one. We
suppose an infinite lattice chain, and only one ball can occupy each box. As one can check
easily from simple examples, the above box—ball system has soliton solutions [8, 24]. For our
later convenience, we transform the evolution equation (3.1) into [8]

G+D.,T (), T-1 )T (), T-1 G+, T (), T-1
YU T 4y DI —maxy DT v DTy T ey T ) 3.2)
where
T . T G+, T G+, T . T
uy; =Yy A Yy =Yy =Yy (3.3)

Here the ultradiscretizet-function Y\ satisfies the quasi-periodic conditian\ ™" =
Y,{,l)‘“l, and we have used the identity; nith B) = — max(—A, —B).

In our previous paper [14], we established a novel relationship between the box—ball
system (3.1) and therystallizedvertex model (i.e., the vertex model at zero temperature). In
the framework of the vertex model, we consider the two-dimensional square lattice as shown
in figure 1. The variablea,Tv,j = {0, 1} for the box—ball system are on tlvertical edges,
and we assign the dynamical variabl1{§j € Z>o on thehorizontaledges. These variables
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evolve downwards and from the left to the right. For each vertex iry (hmduloM)th rows,
we assign the dynamical variable§ ; andvy, ; as

o T
CUN
T |
UN,j !
__g___,____,l (3.4)
! of
N+1,5
[ 51
Y Un,;

where variables obey a condition called the ‘ice rule’; the sum of variables on arrows pointing
into each vertex is equal to that on arrows coming out of the same vertex,

T
Uy ;

To support the integrability of the box—ball system (3.1), we allow the following configuration
for equation (3.4):

+on =T R (3.5)

0 0 1;
0o £+1 | ¢
B g e e 3.6
: 0 ; 14 i £+1 (36
v O vl V0

wheref > 0. These are nothing but the configuration for the non-zero Boltzmann weight of the
crystallized vertex model which originates from the quantized Lax matrix of the Bogoyavlensky
lattice (see [14] for details). We note that a seMbfrows denote a unit of time step as follows:

T T T
(uN,l Y UN2s ey uN,M)
i

T
UnN,1

»

T T
Un, e UNi41g1

T4l
Un,

T
UNz2

.

T T
UN2————»  UNii2

T+1
Un2

[ G

T T
VN, M—eeq——  Uni1 M

'
T+1
: Un,M
Y
T41 , T+1 T+1
(U’N,l YUNZ - ’uN,M)-

Once the boundaries (top ends and left ends in figure 1) are given, a unique configuration of all
vertices on two-dimensional lattices are determined by equation (3.6). The crucial fact is that
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Figure 2. A two-soliton solution is given. Her®, @, .. denoteu?, ; = 1,ul, =1,...
respectively. Values of[,_,. are explicitly written only when they are non-zero.

the evolution of the variables, ; exactly coincides with that for the box—ball system (3.1).
We give an examplel = 3) in figure 2, where the scattering of the two-soliton is shown. To
dlstlngwsh vanables on the vertical and the horizontal edges, we have respective® @ed
forul,, =1,ul,=1,...and 12,3, ... that denote the values o)ﬁj. Note that we
have omitted zero for S|mpI|C|ty
The purpose of this paper is rather to consider the evolution equation related to the variables
vl ;. To this end, we define the variable§y"" andvyy" (for j = 1,..., M) using variables
uy, ; andvy ; as

j—1 M
(/) T _ T+1
Uy E + E (3.79)
=1 J'=j
o M j—1
i), -1
v,\; = E vg,.j, + v,(,_j,. (3.70)
i'=j j'=1

Following the ice rule (3.5), these variables satisfy a relation,

(), T+1 )T (), T+1 (), T+1
Uy tuy’ =uvyya  tuy . (3.8)

We transform the evolution equation (3.1) m;; into that forv(” ’

(3.8). We thus obtain

(. T+1 _ (j) T+1 (. T+1 Un.T Gn.T (H.T-1
Un+1 Z * Z * Z Yyt Z i

.

j=

_Zw(z)ﬂl Zw(;)T (3.9)

using relations (3.7) and

where

T T
DT _ i G+D.T' o). T’
N _m|n< E Uy 1+ E Vil )
T

'=—00 T'=—00
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Figure 3. The evolution ofv}vl)‘r is given. This figure is given from the two-soliton solution in

figure 2 by a transformation (3.7). We omitted zeros aﬁqj here.

Here we have used a relation,
1 T-1
T _ (). T- .1’
uy =y - Z w7
T'=—00

The above equation (3.9) is the evolution equationdjé?’, which is associated with the
variables on the horizontal edges in two-dimensional square lattice. We see that equation (3.9)
is written in a simpler form,

(+D.T+1 (+D.T+1 ().T+1 \K.T _ o ().T-1 . T (), T+1
vy — Uy oy  —uy =Yy -2y Yy . (3.10)

The reason why we introduce the variabfé"’ by (3.7) may become clear from figure 3.
Therein we give the evolution fav,(vl)’T, which corresponds to the two-soliton solution in

figure 2. Here 12, ... denote the values afy"", and we have omitted zeros anfj ;. Note
that unit time steps are different in those figures.

3.2. Ultradiscrete 2D Toda equation

When we rotate figure 3 and regard a coordinstas a direction of the time, we naotice that
the soliton solution obf\{)’T has a characteristic behaviour which reminds us of that for the
ultradiscretized Toda equation [25]. In the rest of this section, we show that the evolution
equation (3.10) coincides with the ultradiscrete 2D Toda equation.

To clarify the structures, we transform the coordinate of variated", ;) of the previous
section into(n, ¢, j) as

0O 1 O T t
<_1 1 0>(N)=<n>. (311)
0O 0 -1 j’ j
Hereafter we change sub- and superscripts of variables #pt into v\”" and so on. By

this transformation figure 3 changes into figure 4. As seen from an example in figure 4, the
evolution for the variable'Y-' has the typical property of the soliton solutions:
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Figure 4. The evolution ofvf,l)” is given by the transformation (3.11) of figure 3.

e a soliton has the rapidity proportional to its amplitude,
o the number of solitons does not change after the collisions.

We shall later construct the soliton solutions explicitly by use ofttffenction in section 4.
The evolution equation (3.10) for th¢”"" is transformed by equation (3.11) into

(=Dt j—1).1+1 j).1+1 . ()t i, (N,
ne - Ur(l] )+l g v,i’) +1 _ Ur(l])t — ‘(//nil _ 21#};1): + wnj_l (3.12)

n—

wherey,"" becomes

}gj),t — min( v’(l{'—l),f’ 1+ vr(l{'),ﬁl).

w ; 11’;0-1

One can check that the example in figure 4 evolves following equation (3.12). By comparing
the evolution equation (3.12) with equation (2.8), we notice that equation (3.12) is the
ultradiscretization of equation (2.8). Actually, when we substitute

' gO¥ ' (i)t 1
v =exp( = v = exp| —— b=- exp<_2)

into equation (2.8), it is straightforward to obtain equation (3.12) in a limit- 0. Note

that in the limitM — oo we can forget about the quasi-periodicity fprandn in v,

and that we can regaruz},j)” as variables defined on (2 + 1)-dimensions. In conclusion, the
evolution equation fop,”" in the limit ¥ — oo can be identified with the ultradiscrete 2D
Toda equation (2.8). Important is that our two-dimensional integrable vertex model is related
to two SCA; the variables.” that originate from the variables on the horizontal edges of
vertices indicate the discrete 2D Toda equation, while the variables on the vertical edges define

the box—ball system.
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The evolution equation (3.12) is bilinearized directly as follows. When we setthe variables

v as

)t _ y()t=1 (G).t-1 ().t—1
vnj - Ynj - 2Yn—1 + Yn—Z
we see that,”" satisfies
Yn(j+l),z + YrEj),Hl — max(Yn(f“l’*”l + Y’ij),t’ erﬂl).ﬁl + Yn(J_)lt _ l). (3.13)

This equation comes from equation (3.2) through a transformation (3.11). Itis easy to see that
the above equation is the ultradiscretization of the bilinear equation (2.5) when we set

X,
TN = exp(Y" ) §=— exp(—}> : (3.14)
€ €

4. The soliton solutions

4.1. Soliton solution of the ultradiscrete 2D Toda equation

We construct the&v-soliton solution for the ultradiscrete 2D Toda equation (3.12) by applying
the ultradiscretizing procedure to tiesoliton solution for the discrete 2D Toda equation given
by (2.12). We consider the soliton solutions for equation (3.13), which is the ultradiscretization
of the bilinear equation (2.5). One should substitute equations (3.14) and

'APi7 i;P,
A(piaQi§pstk)=eXp< ( Qe k Qk))

Ci : 2/ (P,
a=S g g =20 (4.1)

€ €
W(P, P
r=enf™0) rmon(2) imon( 9

into equation (2.12), and take the linit> 0. We finally obtain the ultradiscretizedfunction
as

Y,i-"”:max( > A(P,»,Q,-;Pk,Qk)+Z<c,»+E;f>*’<Pi,Q»)) (4.2)

TE N keTmi<k ies
where
g,/ (P, Q)=—nP —jO+W(P, Q) (4.39)
A(Pi, Qi; P, Qx) = —min(|P; + Q;l, | Pe + Okl (4.30)
W(P, Q) = W(P) =sgnP)(|P| - 1). (4.%)

Note that the functio® (P, Q) does not depend o any more after the ultradiscretization.
To describe the SCA, we assume that velocifteand Q are integers®, Q € Z). For the
simplicity of the scattering matriXd(P;, Q;; Px, Q) (4.3b), we give the following conditions:

PO =21
sgn(P;) = sgn(Py) (P, = P)(Qi —0r) 20 for alli, k.
We write explicitly the one- and two-soliton solutions:

(4.4)

e a one-soliton solution

Y =max0, C+EV(P, Q) (4-5)
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e a two-soliton solution
Y =maxO, C1+ E (P, Q1), C2+ EYM (P2, Q2),
C1+Co+ B (P1, Q1) + EY (P2, Q2) + A(Py, Q1 P2, Q7). (4.6)
In figure 5, we give an example of the two-soliton solution for the ultradiscrete 2D Toda
equation (3.12). Here we s@Py, Q1; P>, 05) = (4, 1; 2, 1) in equation (4.6). In this figure,
then- and j-coordinates are assigned to horizontal and vertical dotted lines respectively, and
we write evolutions everyhreetime steps. When we compare the emphasized numbers in

figure 4 with that in figure 5, we find that the soliton solution &Y in figure 4 is naturally
embedded into the 2D Toda equation.

4.2. Reduction to the Bogoyavlensky lattice from the 2D Toda equation

As we have seen in section 2, the 2D Toda equation corresponds A6 theoo limit of the
Bogoyavlensky lattice. Therefore, to construct the soliton solution for the box—ball system
which is associated with the Bogoyavlensky lattice (1.1), we must consider a proper reduction
of the soliton solutions for the ultradiscrete 2D Toda equation (4.2).

Based on a relationship between théunctions (2.5) for the Bogoyavlensky lattice and

the 2D Toda equation, we consider the reduction condition for the varigbte (3.13),
y M =y (4.7)

1 n+l *

This condition gives a constraint for the velocitieend Q of the theN-soliton solution (4.2).
Instead of the velocity), we use sets of variables:

{0V} for j=0,1,....M
{AQY) for j=01,....,M—1

whereAQY) = QW — QU*D, Roughly speaking, these variables play roles of the variable
‘jQ’ in equation (4.3); jQ — QY. Using the variable®”’ and AQ", the reduction
condition (4.7) is written as

Q(O) — Q(M) +P
and the conditions (4.4) become
PoAQ" eZ  PAQY >1 49
sgnP) =sgnP) (P — P)(AQY" —AQ) >0  foralli, j. k. '
Therefore, wherP > 0, the variableg?”’ should be chosen to satisfy

P=09>0%>...2 0" V> 0" =0 (4.9)

With these variable®”’ and AQ", the soliton solutions (4.2) for the 2D Toda equation
reduce to those for the box—ball system (3.1). We give the explicit forms of one- and two-
soliton solutions as follows:

e a one-soliton solution
Dt ()t
Y,/ =max0, C + E;/"'(P))
e a two-soliton solution

Y, =max0, Cy+ B (Py), Co + B, (P2),
Cr+ Co+ P (Py) + B (Po) + AV (Py; Po)).
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Figure 5. We give an example for the evolution of . The interaction between two solitons
occurs where the underlined numbers such,&s 1 . exist. The emphasized numbets?, ...)
denote the evolution given in figure 4.



Construction of soliton cellular automaton from vertex model 6865

t=6

Figure 5. (Continued)

Here the functiorE{"' (P) and the scattering matrix"/) (Py; P,) are respectively given by

BV (P) = —nP+ QY + W(P)t (4.10)
AV (Py; P) = —min(| P+ AQY|, [P+ AQ3)) (4.12)
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t=12

Figure 5. (Continued)

where we use the functioW (P) (4.3c).
Inthe N > 3 case, from a form of the two-soliton solution we suggest thaivssliton
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solution is given by

Yn(J)st = r}lcal)_(< Z A(j)(Psi; Psk) + Z(CSI’ + Ez(g)’t(PSi)))

8i <S8k ieJ
whereEY" (P) is defined in equation (4.10), aotl (P;; Py) is
AD(P; Py = —min(| P+ AQ™ V] [P+ A Q).

Here the variableA V) obeysA QW) = AQU MOAM | 7| is the number of the elements

of 7, ands;, sy € {1,...,]J]}. See that the scattering mattél’ (P;; P;) depends on the
difference(k —i). After the coordinate transformation (3.11), we can check that these soliton
solutions coincide with that for the box—ball system in [8] where Aheoliton solution was
constructed from the Casorati determinant solution for the Hirota equation [12].

5. Concluding remarks

We have considered two SCA associated with the crystallized vertex model (i.e., the vertex
model at zero temperature) on the square lattice. This vertex model is defined based on the
quantized Lax matrix of the Bogoyavlensky lattice. Our main claim in this paper is that the
evolution of variables on thieorizontaledges of vertices exactly coincides with the evolution
equation for the ultradiscrete 2D Toda equation while the variables aretlieal edges follow
the evolution equations of the box—ball system. Here as is often used, the rank of the underlying
Lie algebra in the integrable system is treated as the second coordinate of the two-dimensional
space [18, 20]. We have also constructed associated soliton solutions explicitly.

We list future problems:

e Are there other integrable dynamical equations to which we can apply both
ultradiscretizationandcrystallizatior?

e How can we interpret the motion of the poles for soliton solutions [26] in the picture of
ultradiscretization?
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