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Abstract. We study the soliton cellular automaton (SCA) in (2+1)-dimensions from the viewpoint
of the integrable vertex model. As in our previous paper, we relate the SCA, the so-called
box–ball system, to an integrable vertex model associated with the Bogoyavlensky lattice. We
extend this framework and introduce the (2 + 1)-dimensional SCA, which can be interpreted as
the ultradiscretization of the 2D Toda equation. We also construct theN -soliton solutions for this
system.

1. Introduction

The Bogoyavlensky lattice [1–5] is a differential-difference equation given by

dVn
dt
= Vn

M∑
k=1

(Vn+k − Vn−k) (1.1)

whereVn ≡ Vn(t) (for t ∈ R, n ∈ Z), andM is an arbitrary positive integer. It has been
shown by using the inverse scattering method that this model is integrable in the Liouville
sense not only for the classical case but also for the quantum case [3]. TheN -soliton solution
is also constructed by use of the bilinear equation [5]. The Hamiltonian structure of the
Bogoyavlensky lattice is related to the latticeW algebra [4,6], and we can regard the hierarchy
of the Bogoyavlensky lattice (a set of commutative flows including equation (1.1)) as the
discrete analogue of the (M + 1)-reduced Kadomtsev–Petviashvili (KP) hierarchy [4].

Recent interest in the Bogoyavlensky lattice is due to the explicit relation with the soliton
cellular automata (SCA). By use of the ‘ultradiscretization’ procedure [7], Tokihiroet al
pointed out a relationship between the bilinear equation for the Bogoyavlensky lattice and
the evolution equation for the SCA, the so-called ‘the box–ball system’ [8, 9], which is a
generalization of the system introduced by Takahashi and Satsuma [10]. Since this bilinear
equation is a reduction of the Hirota equation [11], theN -soliton solution for the box–ball
system is constructed [8,9] by making use of the Casorati determinant solution for the Hirota
equation [12]. This ultradiscretization partly provides an answer to Wolfram’s question: ‘What
is the correspondence between cellular automata and continuous systems?’ [13].

Recently, we proposed another new procedure called ‘crystallization’ to give the SCA from
the Bogoyavlensky lattice in [14]. There, the quantized Lax matrix for the Bogoyavlensky
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lattice is regarded as the Boltzmann weight of the integrable vertex model on the two-
dimensional square lattice. The configurations on each vertex cannot be generally fixed at
a finite temperature, but they are uniquely determined at a zero temperature. We call this
process thecrystallization. A crucial fact which was clarified in [14] is that, in such a unique
configuration, variables on thevertical edges exactly coincide with the time evolution of
Takahashi–Satsuma’s box–ball system. In this paper as a continuation of [14] we shall consider
the integrable vertex model associated with the quantum Bogoyavlensky lattice, and study the
cellular automaton on thehorizontaledges in detail. Our main claim here is that, in theM →∞
limit, this cellular automaton can be interpreted as the ultradiscretized 2D Toda equation while
the cellular automaton on thevertical edge is identified with Takahashi–Satsuma’s box–ball
system. We shall also construct theN -soliton solution for this(2 + 1)-dimensional system,
and propose the reduction condition to obtain the soliton solution for a finiteM case.

This paper is organized as follows. In section 2, we consider a relationship between the
Bogoyavlensky lattice and the 2D Toda equation. We show that the bilinear equation for the
2D Toda equation is given when we modify that for the Bogoyavlensky lattice (1.1) and take a
limit M →∞. We further time-discretize this bilinear equation, and construct theN -soliton
solutions. Using the full-discretized bilinear equation, we constructtwo integrable difference
equations as the discrete 2D Toda equation; one is essentially the same as the Bogoyavlensky
lattice, the other is the dynamical system which will be shown in section 3 to be related to
the integrable vertex model. In section 3, we introduce the ‘crystallized’ integrable vertex
model on a two-dimensional square lattice, and consider the relationship between its unique
configuration and the SCA. We first briefly review the results in [14], and define the box–
ball system in terms of the two-dimensional integrable vertex model. Next we show that the
dynamical system related to thehorizontaledges coincides with the ultradiscretization of the
2D Toda equation in the limitM →∞while variables on theverticaledges give the box–ball
system. In section 4 we construct theN -soliton solution for the ultradiscretized 2D Toda
equation, which gives a soliton solution of the SCA in (2 + 1) dimensions. We further study
how to give a reduction condition to construct theN -soliton solutions for the box–ball system.
The last section is devoted to the concluding remarks.

2. Transformation from the Bogoyavlensky lattice to the 2D Toda equation

We shall derive discrete analogues of the 2D Toda equation from the Bogoyavlensky
lattice (1.1). We modify the dynamical variables for the Bogoyavlensky lattice asVMn+j ≡ V (j)n
(for j = 0, 1, . . . ,M−1) with a conditionV (M)n = V (0)n+1, and rewrite the original equation (1.1)
as

dV (j)n
dt
= V (j)n

( j∑
k=0

V (k)n+1 +
M−1∑
k=j+1

V (k)n −
j−1∑
k=0

V (k)n −
M−1∑
k=j
V (k)n−1

)
. (2.1)

We find that this equation can be written more simply as

d

dt
log
V (j+1)
n

V (j)n
= V (j+1)

n+1 + V (j)n−1− V (j)n − V (j+1)
n . (2.2)

We note that, in the limitM →∞, the Bogoyavlensky lattice (2.2) coincides with the equation
of motion for thesl∞ Toda field theory [15–17], and that we can regard equation (2.2) as a
(2 + 1)-dimensional equation by identifying the superscriptj with another space dimension
besidesn [18]. Explicitly we setV (j)n → 1Vn(1j, t)where1 is a unit size of a new coordinate



Construction of soliton cellular automaton from vertex model 6855

j , and equation (2.2) reduces to the 2D Toda equation in the limit1→ 0;

d2

dt dy
logVn = Vn+1− 2Vn + Vn−1 (2.3)

where we use notationsy = 1j andVn ≡ Vn(y, t). In this sense we can regard equation (2.2)
as a semi-discrete 2D Toda equation.

To construct the soliton solution for the Bogoyavlensky lattice (2.2), we use theτ -function
τ
(j)
n (for n ∈ Z, j = 0, 1, . . .M − 1),

V (j)n =
τ
(j+1)
n+1 τ

(j)

n−1

τ
(j+1)
n τ

(j)
n

.

Here we suppose a condition,τ (M)n = τ (0)n+1. Then equation (2.2) reduces to the bilinear equation,

Dtτ
(j+1)
n · τ (j)n = τ (j+1)

n+1 τ
(j)

n−1− τ (j+1)
n τ (j)n (2.4)

where the operatorDt denotes Hirota’s bilinear operator [19],

(Dt)
nf · g =

(
∂

∂t
− ∂

∂t ′

)n
f (t)g(t ′)|t=t ′ .

It is straightforward to give theN -soliton solution from the bilinear equation (2.4) in the
standard way, and we leave the fully discrete case until later.

Since equation (2.2) has a continuous variablet , it is necessary to introduce the fully
discrete equation to relate the Bogoyavlensky lattice with the cellular automata. The
discretization of the time coordinatet in equation (2.2) is realized by introducing the full-
discretization of the bilinear equation (2.4) [5] as

τ (j+1),t+1
n τ (j),tn − δτ (j+1),t+1

n+1 τ
(j),t

n−1 = (1− δ)τ (j+1),t
n τ (j),t+1

n . (2.5)

Here we impose a conditionτ (M),tn = τ (0),tn+1 andδ denotes the unit size of time-coordinatet .
One recovers equation (2.4) by taking theδ→ 0 limit in equation (2.5). By setting

V (j),tn = τ
(j+1),t+1
n+1 τ

(j),t

n−1

τ
(j+1),t+1
n τ

(j),t
n

with theτ -function in equation (2.5), one obtains the time-discretization of equation (2.2),

V (j+1),t+1
n V (j),tn

V (j+1),t
n V (j),t+1

n

= (1− δ V (j),tn )(1− δV (j+1),t+1
n )

(1− δV (j),tn−1 )(1− δV (j+1),t+1
n+1 )

. (2.6)

We remark that, after the coordinate transformation, equation (2.6) coincides with the equation
of motion for the discrete affineA(1)M Toda field theory [20], and that a rank of the underlying
Lie algebra plays a role of the space dimension.

We introduce another new discrete analogue of the 2D Toda equation by making use
of the sameτ -function in equation (2.5). When we set a variableV (j),tn (for n, t ∈ Z and
j = 0, 1, . . . ,M − 1) as

V (j),tn = τ
(j),t−1
n τ

(j),t−1
n−2

(τ
(j),t−1
n−1 )2

(2.7)

we get the equation of motion for the variableV (j),tn ,

V
(j−1),t+1
n V

(j),t
n

V
(j−1),t
n−1 V

(j),t+1
n

= 9
(j),t

n+1 9
(j),t

n−1

(9
(j),t
n )2

(2.8)
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where9(j),t
n is given by

9(j),t
n = −δ

∞∏
n′=n+1

1

V
(j),t+1
n′

+
∞∏
n′=n

1

V
(j−1),t
n′

. (2.9)

We note that the variableV (j),tn and the dynamical variableV (j),tn for the discrete Bogoyavlensky
lattice (2.6) are related to each other as

V
(j),t+1
n+1 V (j−1),t−1

n−1 = V (j−1),t
n V (j−1),t−1

n (2.10)

and that the variableV (j),tn is written in terms ofV (j),tn as

V (j),tn =
∞∏
k=2

V (j−k),t−kn−k+1

V (j−k),t−kn−k
.

By expanding equation (2.8) by an infinitesimalδ (a unit of discrete timet), and picking up
the first order ofδ, we obtain the time-continuum limit (δ→ 0) of equation (2.8) as

d

dt
log

V
(j)
n

V
(j−1)
n

=
∞∏

n′=n+1

V
(j−1)
n′

V
(j)

n′
− 2

∞∏
n′=n

V
(j−1)
n′

V
(j)

n′
+

∞∏
n′=n−1

V
(j−1)
n′

V
(j)

n′
(2.11)

whereV (j)n ≡ V (j)n (t). Especially in theM = 1 case, we have only one independent variable
V (0)n ≡ Vn, and the mapping (2.10) reduces toVn = Vn+1Vn+2. The time-evolution equation
for Vn becomes

d

dt
Vn = (Vn)2(Vn+1− Vn−1)

which is related to the discrete modified Korteweg–de Vries (KdV) equation [21]. On the
other hand, in the limit ofM → ∞, the variableV (j)n reduces toVn in the continuum limit
of j (we applied the same procedure as that used to derive equation (2.3) from (2.2)), and
equation (2.11) naturally reduces to the 2D Toda equation (2.3). Therefore, we can regard
equation (2.8) as another full-discretization of the 2D Toda equation (2.3). It should be noted
that although the discrete 2D Toda equation and its ultradiscretization were studied in [22],
their equation of motion is different from equations (2.6) and (2.8).

Before closing this section, we give the soliton solutions for the discrete 2D Toda
equation (2.6). By applying the standard method to the bilinear equation (2.5) under the
limit M →∞, theN -soliton solution is obtained as [23]

τ (j),tn =
∑
J⊂I

( ∏
i,k∈J ,i<k

A(pi, qi;pk, qk)
)

exp

(∑
i∈J
(ci + ξ (j),tn (pi, qi))

)
. (2.12)

Here parametersci (i = 1, 2, . . . , N) are arbitrary constants, andpi (resp.qi) denotes a
velocity in then- (resp.j -) direction. The setI is I = {1, . . . , N}, andJ is all subsets ofI.
The functionξ (j),tn (p, q) and the scattering matrixA(pi, qi;pk, qk) are respectively defined
as follows:

ξ (j),tn (p, q) = n logp + j logq + t logw(p, q) (2.13)

A(pi, qi;pk, qk) = (x(pi, qi)− x(pk, qk))(x(p−1
i , q

−1
i )− x(p−1

k , q
−1
k ))

(x(pi, qi)− x(p−1
k , q

−1
k ))(x(p−1

i , q
−1
i )− x(pk, qk))

(2.14)

where functionsw(p, q) andx(p, q) are given by

w(p, q) = 1− δ(1 +x(p−1, q−1))

1− δ(1 +x(p, q))
(2.15)

x(p, q) = q(p − 1)

q − 1
. (2.16)
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Figure 1. We assign variables on the edges of the two-dimensional square lattice. We classify the
horizontal and vertical edges.

3. The vertex model and the SCA

We introduce the two-dimensional integrable vertex model associated with the Bogoyavlensky
lattice following [14]. We show that the ultradiscretization of the 2D Toda equation also
naturally appears in this vertex model.

3.1. The SCA as the Bogoyavlensky lattice

The SCA called ‘the box–ball system’ is defined by the following evolution equation [8]:

uTN,j = min

( N−1∑
N ′=−∞

uT−1
N ′,j −

N−1∑
N ′=−∞

uTN ′,j , 1−
j−1∑
j ′=1

uTN,j ′ −
M∑
j ′=j

uT−1
N,j ′

)
(3.1)

whereM is a positive integer and is equal toM in the Bogoyavlensky lattice (1.1). This
evolution equation describes how the balls move as time passes. The variableuTN,j denotes the
number of the ballj (j = 1, . . . ,M) in theN th box at the timeT , and takes zero or one. We
suppose an infinite lattice chain, and only one ball can occupy each box. As one can check
easily from simple examples, the above box–ball system has soliton solutions [8,24]. For our
later convenience, we transform the evolution equation (3.1) into [8]

Y
(j+1),T
N + Y (j),T−1

N−1 = max(Y (j),TN + Y (j+1),T−1
N−1 , Y

(j+1),T
N−1 + Y (j),T−1

N − 1) (3.2)

where

uTN,j = Y (j),TN + Y (j+1),T
N−1 − Y (j+1),T

N − Y (j),TN−1 . (3.3)

Here the ultradiscretizedτ -functionY (j),TN satisfies the quasi-periodic condition,Y (M+1),T
N =

Y
(1),T +1
N , and we have used the identity; min(A,B) = −max(−A,−B).

In our previous paper [14], we established a novel relationship between the box–ball
system (3.1) and thecrystallizedvertex model (i.e., the vertex model at zero temperature). In
the framework of the vertex model, we consider the two-dimensional square lattice as shown
in figure 1. The variablesuTN,j = {0, 1} for the box–ball system are on thevertical edges,
and we assign the dynamical variablesvTN,j ∈ Z>0 on thehorizontaledges. These variables
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evolve downwards and from the left to the right. For each vertex in thej (moduloM)th rows,
we assign the dynamical variablesuTN,j andvTN,j as

(3.4)

where variables obey a condition called the ‘ice rule’; the sum of variables on arrows pointing
into each vertex is equal to that on arrows coming out of the same vertex,

uTN,j + vTN,j = uT +1
N,j + vTN+1,j . (3.5)

To support the integrability of the box–ball system (3.1), we allow the following configuration
for equation (3.4):

(3.6)

wherè > 0. These are nothing but the configuration for the non-zero Boltzmann weight of the
crystallized vertex model which originates from the quantized Lax matrix of the Bogoyavlensky
lattice (see [14] for details). We note that a set ofM-rows denote a unit of time step as follows:

Once the boundaries (top ends and left ends in figure 1) are given, a unique configuration of all
vertices on two-dimensional lattices are determined by equation (3.6). The crucial fact is that
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Figure 2. A two-soliton solution is given. Here . . . denoteuTN,1 = 1, uTN,2 = 1, . . .

respectively. Values ofvTN,j are explicitly written only when they are non-zero.

the evolution of the variablesuTN,j exactly coincides with that for the box–ball system (3.1).
We give an example (M = 3) in figure 2, where the scattering of the two-soliton is shown. To
distinguish variables on the vertical and the horizontal edges, we have respectively used
. . . for uTN,1 = 1, uTN,2 = 1, . . . and 1, 2, 3, . . . that denote the values ofvTN,j . Note that we
have omitted zero for simplicity.

The purpose of this paper is rather to consider the evolution equation related to the variables
vTN,j . To this end, we define the variablesu(j),TN andv(j),TN (for j = 1, . . . ,M) using variables
uTN,j andvTN,j as

u
(j),T

N =
j−1∑
j ′=1

uT +1
N,j ′ +

M∑
j ′=j

uTN,j ′ (3.7a)

v
(j),T

N =
M∑
j ′=j

vT−1
N,j ′ +

j−1∑
j ′=1

vTN,j ′ . (3.7b)

Following the ice rule (3.5), these variables satisfy a relation,

v
(j),T +1
N + u(j),TN = v(j),T +1

N+1 + u(j),T +1
N . (3.8)

We transform the evolution equation (3.1) foruTN,j into that forv(j),TN using relations (3.7) and
(3.8). We thus obtain

v
(j),T +1
N+1 − v(j),T +1

N =
j−1∑
j ′=1

v
(j ′),T +1
N +

M∑
j ′=j

v
(j ′),T
N +

j−1∑
j ′=1

ψ
(j ′),T
N +

M∑
j ′=j

ψ
(j ′),T−1
N

−
j−1∑
j ′=1

ψ
(j ′),T +1
N −

M∑
j ′=j

ψ
(j ′),T
N (3.9)

where

ψ
(j),T

N = min

( T∑
T ′=−∞

v
(j+1),T ′
N , 1 +

T∑
T ′=−∞

v
(j),T ′
N+1

)
.
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Figure 3. The evolution ofv(1),TN is given. This figure is given from the two-soliton solution in
figure 2 by a transformation (3.7). We omitted zeros anduTN,j here.

Here we have used a relation,

uTN,j = ψ(j),T−1
N −

T−1∑
T ′=−∞

v
(j),T ′
N .

The above equation (3.9) is the evolution equation forv
(j),t

N , which is associated with the
variables on the horizontal edges in two-dimensional square lattice. We see that equation (3.9)
is written in a simpler form,

v
(j+1),T +1
N − v(j+1),T +1

N+1 + v(j),T +1
N+1 − v(j),TN = ψ(j),T−1

N − 2ψ(j),T

N +ψ(j),T +1
N . (3.10)

The reason why we introduce the variablev(j),tn by (3.7) may become clear from figure 3.
Therein we give the evolution forv(1),TN , which corresponds to the two-soliton solution in
figure 2. Here 1, 2, . . . denote the values ofv(1),TN , and we have omitted zeros anduTN,j . Note
that unit time steps are different in those figures.

3.2. Ultradiscrete 2D Toda equation

When we rotate figure 3 and regard a coordinateN as a direction of the time, we notice that
the soliton solution ofv(j),TN has a characteristic behaviour which reminds us of that for the
ultradiscretized Toda equation [25]. In the rest of this section, we show that the evolution
equation (3.10) coincides with the ultradiscrete 2D Toda equation.

To clarify the structures, we transform the coordinate of variables(N, T , j ′)of the previous
section into(n, t, j) as( 0 1 0

−1 1 0
0 0 −1

)(
T

N

j ′

)
=
(
t

n

j

)
. (3.11)

Hereafter we change sub- and superscripts of variables fromv
(j ′),T
N into v(j),tn and so on. By

this transformation figure 3 changes into figure 4. As seen from an example in figure 4, the
evolution for the variablev(1),tn has the typical property of the soliton solutions:
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Figure 4. The evolution ofv(1),tn is given by the transformation (3.11) of figure 3.

• a soliton has the rapidity proportional to its amplitude,
• the number of solitons does not change after the collisions.

We shall later construct the soliton solutions explicitly by use of theτ -function in section 4.
The evolution equation (3.10) for thev(j),tn is transformed by equation (3.11) into

v
(j−1),t
n−1 − v(j−1),t+1

n + v(j),t+1
n − v(j),tn = ψ(j),t

n+1 − 2ψ(j),t
n +ψ(j),t

n−1 (3.12)

whereψ(j),t
n becomes

ψ(j),t
n = min

( ∞∑
n′=n

v
(j−1),t
n′ , 1 +

∞∑
n′=n+1

v
(j),t+1
n′

)
.

One can check that the example in figure 4 evolves following equation (3.12). By comparing
the evolution equation (3.12) with equation (2.8), we notice that equation (3.12) is the
ultradiscretization of equation (2.8). Actually, when we substitute

V (j),tn = exp

(
v
(j),t
n

ε

)
9(j),t
n = exp

(
−ψ

(j),t
n

ε

)
δ = −exp

(
−1

ε

)
into equation (2.8), it is straightforward to obtain equation (3.12) in a limitε → 0. Note
that in the limitM → ∞ we can forget about the quasi-periodicity forj andn in v(j),tn ,
and that we can regardv(j),tn as variables defined on (2 + 1)-dimensions. In conclusion, the
evolution equation forv(j),tn in the limitM → ∞ can be identified with the ultradiscrete 2D
Toda equation (2.8). Important is that our two-dimensional integrable vertex model is related
to two SCA; the variablesv(j),tn that originate from the variables on the horizontal edges of
vertices indicate the discrete 2D Toda equation, while the variables on the vertical edges define
the box–ball system.
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The evolution equation (3.12) is bilinearized directly as follows. When we set the variables
v
(j),t
n as

v(j),tn = Y (j),t−1
n − 2Y (j),t−1

n−1 + Y (j),t−1
n−2

we see thatY (j),tn satisfies

Y (j+1),t
n + Y (j),t+1

n = max(Y (j+1),t+1
n + Y (j),tn , Y

(j+1),t+1
n+1 + Y (j),tn−1 − 1). (3.13)

This equation comes from equation (3.2) through a transformation (3.11). It is easy to see that
the above equation is the ultradiscretization of the bilinear equation (2.5) when we set

τ (j),tn = exp

(
Y
(j),t
n

ε

)
δ = −exp

(
−1

ε

)
. (3.14)

4. The soliton solutions

4.1. Soliton solution of the ultradiscrete 2D Toda equation

We construct theN -soliton solution for the ultradiscrete 2D Toda equation (3.12) by applying
the ultradiscretizing procedure to theN -soliton solution for the discrete 2D Toda equation given
by (2.12). We consider the soliton solutions for equation (3.13), which is the ultradiscretization
of the bilinear equation (2.5). One should substitute equations (3.14) and

A(pi, qi;pk, qk) = exp

(
A(Pi,Qi;Pk,Qk)

ε

)
ci = Ci

ε
ξ (j),tn, (p, q) = 4

(j),t
n (P ,Q)

ε

w(p, q) = exp

(
W(P,Q)

ε

)
p = exp

(
−P
ε

)
q = exp

(
−Q
ε

) (4.1)

into equation (2.12), and take the limitε → 0. We finally obtain the ultradiscretizedτ -function
as

Y (j),tn = max
J⊂I

( ∑
i,k∈J ,i<k

A(Pi,Qi;Pk,Qk) +
∑
i∈J
(Ci +4(j),tn (Pi,Qi))

)
(4.2)

where

4(j),tn (P ,Q) = −nP − jQ +W(P,Q)t (4.3a)

A(Pi,Qi;Pk,Qk) = −min(|Pi +Qi |, |Pk +Qk|) (4.3b)

W(P,Q) ≡ W(P ) = sgn(P )(|P | − 1). (4.3c)

Note that the functionW(P,Q) does not depend onQ any more after the ultradiscretization.
To describe the SCA, we assume that velocitiesP andQ are integers (P , Q ∈ Z). For the
simplicity of the scattering matrixA(Pi,Qi;Pk,Qk) (4.3b), we give the following conditions:

PiQi > 1

sgn(Pi) = sgn(Pk) (Pi − Pk)(Qi −Qk) > 0 for all i, k.
(4.4)

We write explicitly the one- and two-soliton solutions:

• a one-soliton solution

Y (j),tn = max(0 , C +4(j),tn (P ,Q)) (4.5)
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• a two-soliton solution

Y (j),tn = max(0, C1 +4(j),tn (P1,Q1), C2 +4(j),tn (P2,Q2),

C1 +C2 +4(j),tn (P1,Q1) +4(j),tn (P2,Q2) +A(P1,Q1;P2,Q2)). (4.6)

In figure 5, we give an example of the two-soliton solution for the ultradiscrete 2D Toda
equation (3.12). Here we set(P1,Q1;P2,Q2) = (4, 1; 2, 1) in equation (4.6). In this figure,
then- andj -coordinates are assigned to horizontal and vertical dotted lines respectively, and
we write evolutions everythree time steps. When we compare the emphasized numbers in
figure 4 with that in figure 5, we find that the soliton solution forv(1),tn in figure 4 is naturally
embedded into the 2D Toda equation.

4.2. Reduction to the Bogoyavlensky lattice from the 2D Toda equation

As we have seen in section 2, the 2D Toda equation corresponds to theM →∞ limit of the
Bogoyavlensky lattice. Therefore, to construct the soliton solution for the box–ball system
which is associated with the Bogoyavlensky lattice (1.1), we must consider a proper reduction
of the soliton solutions for the ultradiscrete 2D Toda equation (4.2).

Based on a relationship between theτ -functions (2.5) for the Bogoyavlensky lattice and
the 2D Toda equation, we consider the reduction condition for the variableY

(j),t
n (3.13),

Y (M),tn = Y (0),tn+1 . (4.7)

This condition gives a constraint for the velocitiesP andQ of the theN -soliton solution (4.2).
Instead of the velocityQ, we use sets of variables:

{Q(j)} for j = 0, 1, . . . ,M
{1Q(j)} for j = 0, 1, . . . ,M − 1

where1Q(j) = Q(j) −Q(j+1). Roughly speaking, these variables play roles of the variable
‘jQ’ in equation (4.3a); jQ → Q(j). Using the variablesQ(j) and1Q(j), the reduction
condition (4.7) is written as

Q(0) = Q(M) + P

and the conditions (4.4) become

Pi,1Q
(j)

i ∈ Z Pi1Q
(j)

i > 1

sgn(Pi) = sgn(Pk) (Pi − Pk)(1Q(j)

i −1Q(j)

k ) > 0 for all i, j, k.
(4.8)

Therefore, whenP > 0, the variablesQ(j) should be chosen to satisfy

P = Q(0) > Q(1) > · · · > Q(M−1) > Q(M) = 0. (4.9)

With these variablesQ(j) and1Q(j), the soliton solutions (4.2) for the 2D Toda equation
reduce to those for the box–ball system (3.1). We give the explicit forms of one- and two-
soliton solutions as follows:

• a one-soliton solution

Y (j),tn = max(0, C +4(j),tn (P ))

• a two-soliton solution

Y (j),tn = max(0, C1 +4(j),tn (P1), C2 +4(j),tn (P2),

C1 +C2 +4(j),tn (P1) +4(j),tn (P2) +A(j)(P1;P2)).
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Figure 5. We give an example for the evolution ofv(j),tn . The interaction between two solitons
occurs where the underlined numbers such as 1, 2, . . . exist. The emphasized numbers (1, 2, . . .)
denote the evolution given in figure 4.
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Figure 5. (Continued)

Here the function4(j),tn (P ) and the scattering matrixA(j)(P1;P2) are respectively given by

4(j),tn (P ) = −nP +Q(j) +W(P )t (4.10)

A(j)(P1;P2) = −min(|P1 +1Q(j)

1 |, |P2 +1Q(j)

2 |) (4.11)
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Figure 5. (Continued)

where we use the functionW(P ) (4.3c).
In theN > 3 case, from a form of the two-soliton solution we suggest that theN -soliton
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solution is given by

Y (j),tn = max
J⊂I

(∑
si<sk

A(j)(Psi ;Psk ) +
∑
i∈J
(Csi +4(j),tn (Psi ))

)
where4(j),tn (P ) is defined in equation (4.10), andA(j)(Pi;Pk) is

A(j)(Pi;Pk) = −min(|Pi +1Q(j+k−i−1)
i |, |Pk +1Q(j+k−i−1)

k |).
Here the variable1Q(j) obeys1Q(j) ≡ 1Q(j modM), |J | is the number of the elements
of J , andsi, sk ∈ {1, . . . , |J |}. See that the scattering matrixA(j)(Pi;Pk) depends on the
difference(k− i). After the coordinate transformation (3.11), we can check that these soliton
solutions coincide with that for the box–ball system in [8] where theN -soliton solution was
constructed from the Casorati determinant solution for the Hirota equation [12].

5. Concluding remarks

We have considered two SCA associated with the crystallized vertex model (i.e., the vertex
model at zero temperature) on the square lattice. This vertex model is defined based on the
quantized Lax matrix of the Bogoyavlensky lattice. Our main claim in this paper is that the
evolution of variables on thehorizontaledges of vertices exactly coincides with the evolution
equation for the ultradiscrete 2D Toda equation while the variables on theverticaledges follow
the evolution equations of the box–ball system. Here as is often used, the rank of the underlying
Lie algebra in the integrable system is treated as the second coordinate of the two-dimensional
space [18,20]. We have also constructed associated soliton solutions explicitly.

We list future problems:

• Are there other integrable dynamical equations to which we can apply both
ultradiscretizationandcrystallization?
• How can we interpret the motion of the poles for soliton solutions [26] in the picture of

ultradiscretization?
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